Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Compound flooding, the concurrence of multiple flooding mechanisms such as storm surge, heavy rainfall, and riverine flooding, poses a significant threat to coastal communities. To mitigate the impacts of compound flooding, forecasts must represent the variability of flooding drivers over a wide range of spatial scales while remaining timely. One approach to develop these forecasts is through subgrid corrections, which utilize information at smaller scales to “correct” water levels and current velocities averaged over the model scale. Recent studies have shown that subgrid models can improve both accuracy and efficiency; however, existing models are not able to account for the dynamic interactions of hydrologic and hydrodynamic drivers and their contributions to flooding along the smallest flow pathways when using a coarse resolution. Here, we have developed a solver called CoaSToRM (Coastal Subgrid Topography Research Model) with subgrid corrections to compute compound flooding in coastal systems resulting from fluvial, pluvial, tidal, and wind-driven processes. A key contribution is the model’s ability to enforce all flood drivers and use the subgrid corrections to improve the accuracy of the coarse-resolution simulation. The model is validated for Hurricane Eta 2020 in Tampa Bay, showing improved prediction accuracy with subgrid corrections at 42 locations. Subgrid models with coarse resolutions (R2 = 0.70, 0.73, 0.77 for 3-, 1.5-, 0.75-km grids) outperform standard counterparts (R2 = 0.03, 0.14, 0.26). A 3-km subgrid simulation runs roughly 50 times faster than a 0.75-km subgrid simulation, with similar accuracy.more » « less
-
Coastal boulder deposits (CBD) are wave-emplaced supratidal accumulations that record extreme inundation on rocky coasts. They are poorly understood but are of growing importance as we seek to better understand the extremes of wave power on coastlines. The Aran Islands, Ireland, host CBD in varying settings ranging from sheer cliff tops to wide shore platforms, and at elevations to about 40 m above sea level. Deposits are known to be active during strong storm events and provide a unique opportunity to examine relationships between wave energy, setting, and CBD occurrence. We use topographic elevation (Z) and offshore 100-years significant wave height (H s,100 ) to calculate a dimensionless elevation Z* = Z/H s,100 at 25 m intervals all along the Atlantic-facing coasts of the Aran Islands, and record whether CBD were present or absent at each location. The data reveal universal CBD presence at locations with low dimensionless elevations and near-monotonic decreasing frequency of CBD occurrence as Z* increases. On the Aran Islands, CBD are restricted to locations with Z*<3.13. For high elevation deposits it appears that unresolved local factors may be the major determinants in whether CBD will form. This approach can be applied at any CBD-bearing coastline and has the potential to change the way that we think about these deposits. Evaluation of dimensionless elevations at CBD locations around the world will help build broader understanding of the impact local shoreline conditions have on CBD formation. Determining these relationships contributes to the ongoing need to better understand interactions between extreme waves and rocky coasts.more » « less
-
Abstract Coastal boulder deposits (CBD) provide what are sometimes the only remaining signatures of wave inundation on rocky coastlines; in recent decades, CBD combined with initiation of motion (IoM) analyses have repeatedly been used as primary evidence to infer the existence of ancient tsunamis. However, IoM storm wave heights inferred by these studies have been shown to be highly inaccurate, bringing some inferences into question. This work develops a dimensionless framework to relate CBD properties with storm‐wave hindcasts and measurements, producing data‐driven relations between wave climate and boulder properties. We present an elevation‐density‐size‐inland distance‐wave height analysis for individual storm‐transported boulders which delineates the dynamic space where storm‐wave CBD occur. Testing these new relations against presumed tsunami CBD demonstrates that some fall well within the capabilities of storm events, suggesting that some previous studies might be fruitfully reexamined within the context of this new framework.more » « less
An official website of the United States government
